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Introduction Background

What is DMTCP / checkpointing?

We present DMTCP: Distributed MultiThreaded CheckPointing

Checkpointing is taking a snapshot of an applications state that can
later be restarted

DMTCP is

distributed - can checkpoint a network of programs connected by
sockets
multithreaded - each program can have many threads
transparent - works on unmodified binaries
user-level - kernel is not modified
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Introduction Motivation

The traditional motivation for checkpointing

Long running computation on a large cluster

Computation takes 30 days

On day 29...

a node crashes. Disaster!!!

Restart from the last checkpoint

Gives fault tolerance with no programmer support
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Introduction Motivation

Haven’t we heard of checkpointing before?

Surveying existing checkpointing systems:

Most don’t work
Others have never been released

Difficulty in checkpointing is robustness

Going from checkpointing one application to most:

A four year effort
Now about 10 developers

Exception: BLCR

Also works for most applications (though fails on many of our
benchmarks)
Kernel level

Can’t bundle with application
Harder to maintain

Doesn’t support sockets
Distributed support (with customized MPI libraries) less robust
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Introduction Related work

Related work

Kernel level
Berkeley Lab Checkpoint/Restart (BLCR)

Doesn’t support sockets
Open source

Zap (from Columbia University)

Distributed/multithreaded
Closed source, not publicly available

User level

Deja Vu (from Virginia Tech)

Distributed/multithreaded
Closed source, not publicly available

Reported overheads 97x slower for a benchmark of similar scale

DMTCP (our system)

Distributed/multithreaded
Open Source
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Introduction Motivation

Other uses for checkpointing

Fault tolerance

Process migration

Replacement for save/restore workspace

Skip past long startup times

Debugging

Ultimate bug report

Speculative execution
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Introduction Short Demo

Short Demo
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Design and Implementation How it works

Gaining initial control

Dynamic library injection (LD PRELOAD) to force the user
application to load dmtcphijack.so

A checkpointing manager thread is spawned in each process

Additional forked processes are hijacked recursively

Remote process (spawned with ssh) are detected and hijacked

The result: our library and checkpoint manger thread in every user
process
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Design and Implementation How it works

Saving program state

1 User space memory

- read from checkpoint management thread

2 Processor state

- hijack user threads and copy to memory

3 Data in network

- drained to process memory

4 Kernel state

- probing at checkpoint time

Memory Maps – /proc filesystem
File descriptors (files) – /proc filesystem, fstat, etc
File descriptors (sockets, pipes, pts, etc) – /proc filesystem,
getsockopt, wrappers around creation functions
Other information (signal handlers, etc) – POSIX API
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Design and Implementation Distributed checkpointing algorithm

Our checkpointing algorithm

Distributed algorithm

Only global communication is a barrier

Coordinated / “stop the world” style checkpointing

Jason Ansel (MIT) DMTCP May 26, 2009 12 / 39



Design and Implementation Distributed checkpointing algorithm

Checkpointing algorithm, by example

Running normally, wait for checkpoint to begin

Process A Process B

Process C

Process D

Node 1 Node 2 Node 3

Shared 
Socket

Socket

DMTCP ControlUser Control Socket Data
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Design and Implementation Distributed checkpointing algorithm

Checkpointing algorithm, by example

Drain socket data, barrier

Process A Process B

Process C

Process D

Node 1 Node 2 Node 3

Shared 
Socket
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DMTCP ControlUser Control Socket Data
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Perform single process checkpointing, barrier
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Design and Implementation Distributed checkpointing algorithm

Checkpointing algorithm, by example

Resume user threads
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Design and Implementation Distributed checkpointing algorithm

Checkpointing algorithm, by example
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Design and Implementation Distributed checkpointing algorithm

Restart algorithm, by example

Start with nothing (possibly different nodes)

Node 1 Node 2 Node 3
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Restart algorithm, by example

Restart process on each node
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Restart algorithm, by example

Recreate files, sockets, etc
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Fork user processes
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Design and Implementation Distributed checkpointing algorithm

Restart algorithm, by example

Rearrange FDs to match each user process
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Design and Implementation Distributed checkpointing algorithm

Restart algorithm, by example

Restore memory/threads
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Design and Implementation Distributed checkpointing algorithm

Restart algorithm, by example

Restore memory/threads
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Design and Implementation Distributed checkpointing algorithm

Restart algorithm, by example

Continue as if after a checkpoint

Process A Process B

Process C

Process D

Node 1 Node 2 Node 3

Shared 
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DMTCP ControlUser Control Socket Data
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Design and Implementation Other features

Other features supported by DMTCP

Threads, mutexes/semaphores, fork, exec, ssh

Shared memory (between processes)

TCP/IP sockets, UNIX domain sockets, pipes

Pseudo terminals, terminal modes, ownership of controlling terminals

Signals and signal handlers

I/O (including the readline library), shared fds

Parent-child process relationships, process id & thread id
virtualization, session and process group ids

Syslogd, vdso

Address space randomization, exec shield

Checkpoint image compression, forked checkpointing

...
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Design and Implementation Other features

Pseudo terminals

Example execution:

Process 1 opens /dev/ptmx
Process 1 calls ptsname() on the FD

Returns the string "/dev/pts/7"

String copied and shared
...
At restart time /dev/pts/7 is in use!!!
Problem: we can’t change the string hidden in user memory

Solution: virtualize in a sneaky way

ptsname() returns /tmp/unique
/tmp/unique is a symlink to /dev/pts/7
At restart time we can redirect /tmp/unique to an available device
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Design and Implementation Other features

Checkpoint image compression
Ti
m
e

Space

Fa
st
e
r

Smaller

Normal

Three checkpointing modes:
1 Uncompressed (normal) checkpoints

2 Compressed checkpoints

Calls “gzip –fast” as a filter
On our distributed benchmarks:
2.1x to 28.0x (mean 7.3x) compression

3 Forked checkpointing

Completed in parallel to user application
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Results Performance trends

Time .vs. # of nodes
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Results Performance trends

What controls checkpoint time?

With compression:

time(checkpoint) ≈ time(gzip memory)
In parallel across cluster

Without compression, dominated by writing to disk

Stage Compressed Uncompressed

Suspend user threads 0.02

0.03

Elect FD leaders 0.00

0.00

Drain kernel buffers 0.10

0.10

Write checkpoint 3.94

0.63

Refill kernel buffers 0.00

0.00

Total 4.07

0.76

NAS/MG benchmark with 32 compute processes on 8 nodes
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Results Benchmarks

Benchmarks Overview

Distributed benchmarks (10 benchmarks)

Run on a 32 node (128 core) cluster

Single node benchmarks (20 benchmarks)

Run on an 8 core machine
Some, not all, are multithreaded/multiprocess
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Results Benchmarks

Distributed benchmarks

Based on sockets directly:

iPython/Shell and iPython/Demo: parallel/distributed python shell

Run using MPICH2:

Baseline
ParGeant4: a million-line C++ toolkit for simulating particle-mattter
interaction.
NAS NPB2.4: CG (Conjugate Gradient)

Run using OpenMPI:

Baseline
NAS NPB2.4: BT (Block Tridiagonal), SP (Scalar Pentadiagonal), EP
(Embarrassingly Parallel), LU (Lower-Upper Symmetric Gauss-Seidel),
MG (Multi Grid), and IS (Integer Sort).
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Results Benchmarks

Single node benchmarks

Scripting languages:

BC – an arbitrary precision calculator language
GHCi – the Glasgow Haskell Compiler
Ghostscript – PostScript and PDF language interpreter
GNUPlot – an interactive plotting program
GST – the GNU Smalltalk virtual machine
Macaulay2 – a system supporting research in algebraic geometry and
commutative algebra
MATLAB – a high-level language and interactive environment for
technical computing
MZScheme – the PLT Scheme implementation
OCaml – the Objective Caml interactive shell
Octave – a high-level interactive language for numerical computations
PERL – Practical Extraction and Report Language interpreter
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Results Benchmarks

Single node benchmarks (continued)

Scripting languages (continued):

PHP – an HTML-embedded scripting language
Python – an interpreted, interactive, object-oriented programming
language
Ruby – an interpreted object-oriented scripting language
SLSH – an interpreter for S-Lang scripts
tclsh – a simple shell containing the Tcl interpreter

Other programs:

Emacs – a well known text editor
vim/cscope – interactively examine a C program.
Lynx – a command line web browser
SQLite – a command line interface for the SQLite database
tightvnc/twm – headless X server and window manager
RunCMS – Simulation of the CMS experiment at LHC/CERN
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Results Benchmarks

RunCMS Benchmark

RunCMS benchmark

Developed at CERN
Simulates the CMS experiment of the large hadron collider (LHC)
2 million lines of code
700 dynamic libraries
12 minute startup time

Checkpoint time (with compression) is 25.2 seconds

Restart time is 18.4 seconds

680MB memory image, compressed to 225MB
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Conclusions Final remarks

Future work

Integration with Condor

Condor is a ground breaking process migration system
Based on its own single-process checkpointer

Requires relinking.
Doesn’t support: threads, multiple processes, mmap, etc.

DMTCP will remove these limitations
Hope to release an experimental beta version by end of summer

DMTCP as a save/restore workspace feature in SCIRun

Computational workbench
Visual programming
For modelling, simulation and visualization
Millions of lines of code

Improving support for X windows applications
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Conclusions Final remarks

Special thanks/credit goes to...

MTCP (our single-process component):

Michael Rieker

Colleagues at U Wisconsin (integration with Condor):

Peter Keller and others

Colleagues at CERN (help with runCMS, ParGeant4):

John Apostolakis, Giulio Eulisse, Lassi Tuura, and others

Other DMTCP developers / contributers:

Alex Brick, Tyler Deniseton Xin Dong, Daniel Kunkle Artem Polyakov.
Praveen Solanki, and Ana-Maria Visan
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Conclusions Questions

For more information

Source code (LGPL), documentation, other publications:

http://dmtcp.sourceforge.net/

Questions?

Jason Ansel (MIT) DMTCP May 26, 2009 29 / 39
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Conclusions Questions

Thank you
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Backup Slides

Backup Slides
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Backup Slides

Usage

1 Start your program under DMTCP:
dmtcp checkpoint [options] <program>
For example:
dmtcp checkpoint mpdboot -n 32
dmtcp checkpoint mpirun -np 32 hellompi

2 Request a checkpoint
dmtcp command --checkpoint

3 Restart:
./dmtcp restart script.sh
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Backup Slides

MultiThreaded CheckPointing (MTCP)

MTCP is our single process checkpointing component

Separate/modular so that it can be swapped out (when porting)

Requires its own talk to properly describe

See our past publication:
Transparent User-Level Checkpointing for the Native POSIX Thread
Library for Linux.
Michael Rieker, Jason Ansel, and Gene Cooperman.
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Distributed benchmark timings
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Single node benchmark performance
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Experimental Setup

Distributed (cluster) tests:
32 node cluster
4 cores per node (128 total cores)
dual-socket, dual-core Xeon 5130
8 or 16 GB ram/node
64-bit Red Hat Enterprise 4
Linux 2.6.9

Single node tests:
8 cores
dual-socket, quad core Xeon E5320
8 GB ram
64-bit Debian “sid”
Linux 2.6.28

DMTCP has been tested on:
Ubuntu, Debian, OpenSuse, Fedora, RHEL, ...
Linux 2.6.9 and up
x86, x86 64
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Our checkpoint algorithm

The checkpoint management thread, in each user process, performs
the following:

1 Wait for the checkpoint to begin
2 Hijack and suspend user threads

3 Node-local elections for shared resources

4 Drain sockets to process memory

5 Single-process checkpointing

6 Refill sockets

7 Resume user threads
8 Go to step 1

“ ” is a cluster-wide barrier
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Our restart algorithm

Initially, one restart process per node, in each restart process:
1 Restore files, ptys, other single process FDs
2 Reconnect sockets using a cluster wide discovery service
3 Fork into user processes
4 Rearrange FDs for each process
5 Restore each process memory / threads
6 Continue with step 9 in the checkpoint algorithm

Refill kernel buffers
Resume user threads
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Varying memory usage
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Checkpoint time is dominated by writing checkpoints to disk. Compression
disabled. A synthetic program on 32 nodes.
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