
An Overview of Using Condor with DMTCP Checkpointing

Samaneh Kazemi

Version 1.0 (July 3, 2012)

Contents

1 Starting Point 2

2 The Condor Universes 3

3 Condor’s File Transfer Mechanism 3

4 Basic Condor Commands 3

5 Status of a job on a Condor exec host 4

6 Sample Submit Description Files 4
6.1 Transfering Input Files . 5
6.2 Transfering Output Files . 5

7 The shim dmtcp Script 5
7.1 Usage of shim dmtcp Script . 5
7.2 Preparing the DMTCP files prior to the Condor job 5

8 Debugging Condor/DMTCP jobs and Internals of shim dmtcp 6
8.1 Internals of shim dmtcp Script . 6
8.2 Debugging a Condor Job Using DMTCP . 7

A Appendix: Condor Submit Description File 7
A.1 Submit Description File: assumes DMTCP installed globally 9
A.2 Submit Description File: assumes privately installed DMTCP 10

NEWS (July 3, 2012): There appears to be a bug related to the dependency-based boot-
ing of Debian 6.0/squeeze, which affects the use of Condor/DMTCP. If you use Debian
squeeze, please see https: // condor-wiki. cs. wisc. edu/ index. cgi/ tktview? tn= 3094 .

1

https://condor-wiki.cs.wisc.edu/index.cgi/tktview?tn=3094

1 Starting Point

DMTCP (Distributed MultiThreaded CheckPointing) can be found at http://dmtcp.sourceforge.net.
The primary web page for using DMTCP checkpointing with the Condor Vanilla Universe can be
found at https://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=DmtcpCondor under the name
dmtcp condor integration.

For those who are already familar with Condor, it suffices to skip immediately to the Ap-
pendix A, and copy a version of the submit description file found there. You will also need the
shim dmtcp script, found on the Condor project pages, or at http://dmtcp.sourceforge.net/condor.html.
The submit description file runs shim dmtcp, and the arguments to shim dmtcp specify the actual
application that you will run in Condor.

For those who would like a gentler intorduction, one uses the condor submit command to
submit a job. Its argument is a submit description file in which Condor finds everything it needs
to know about the job. One specifies parameters in the file, known as attributes. The second
most important Condor command is condor q. In the header of the output, note especially ‘ID’
(CLUSTER ID.JOB ID) and ‘ST’ (STATUS). The CLUSTER ID.JOB ID (for example, 5690.0)
is the name of your job, and is needed for commands such as condor ssh to job, condor rm,
and condor vacate. The status is usually ’R’ (running), ’I’ (idle), ’H’ (hold), ’C’ (completed),
’X’ (removed), or ’>’ (transferring output).

Condor works hard to keep a job running. When a machine must vacate a job from a machine
(due to a higher priority use of that machine, time limit, etc.). Condor must kill or migrate that
job. DMTCP (Distributed MultiThreaded CheckPointing) is a checkpointing package that allows
jobs to be migrated, or later restarted.

Integrating DMTCP with Condor. In integrating DMTCP with Condor’s vanilla universe,
it’s important to note that Condor doesn’t know anything about DMTCP. The user submits a
Condor job called shim dmtcp. The program shim dmtcp is a shell script that takes arguments. A
typical calling sequence would be:

shim dmtcp --log shim dmtcp.log --stdout foo.out --stderr foo.err --ckptint 1800 \
./foo arg1 . . .

As a consequence, the Condor submit description file will list shim dmtcp as the Condor
job executable. The Condor submit description file will describe foo via the Condor attribute,
transfer input files. (I.e., foo is an input file for shim dmtcp.)

When Condor vacates a job, it will first send shim dmtcp a soft kill signal (SIGINT). The hard
kill signal (SIGQUIT) is sent later in case shim dmtcp does not exit. Normally, shim dmtcp will
trap the SIGINT, and call DMTCP to create a checkpoint. Then, shim dmtcp exits.

After killing or vacating a job in the Condor vanilla universe, Condor will assume that the job
must be re-started from the beginning on a new host. However, when Condor re-starts shim dmtcp,
the shim script will look for checkpoint files in the local directory. If it finds them, it assumes that
it should restart an old job, and calls on DMTCP to do so.

2

http://dmtcp.sourceforge.net
https://condor-wiki.cs.wisc.edu/index.cgi/wiki?p=DmtcpCondor
http://dmtcp.sourceforge.net/condor.html

2 The Condor Universes

There are several runtime environments in Condor called universes. The most common two are
the Standard Universe and Vanilla Universe. The Standard Universe allows you to submit a
restricted class of jobs (single-threaded, single-process, etc.) to be run by Condor. Condor’s native
checkpointer allows jobs to be migrated or later restarted. In contrast, the Vanilla Universe does
not support built-in checkpointing.

In the Standard Universe, it is required to compile your program with the Condor libraries. For
additional restrictions, see:
http://research.cs.wisc.edu/condor/manual/v7.6/2 4Road map Running.html#sec:standard-univ-erse

3 Condor’s File Transfer Mechanism

Internally, Condor copies the user’s files to a sandbox directory (sometimes known as a “build” or
“working” directory) on the exec host. Sandbox directories are created as needed. The location
of the sandbox directory is specified by the LOCAL DIR variable of the configuration file. The
location of the Condor configuration file varies. The recommended way to find the location is
issuing the “condor config val -config” command. A convenient alternative is the command
“condor config val EXECUTE”.

Condor executes the job on the exec host, and transfers output back to the submit directory of
the submit host. The submit description file specifies which files and directories to transfer, and at
what point the output files should be copied back to the submitting machine. If the job does not
finish, for instance because of an error during execution, the files will not be transferred back to
the submit host. (See Section 6 for further information on submit description files.)

4 Basic Condor Commands

condor submit job.sub: Queue jobs for execution on remote machines. This requires the submit
description file, job.sub. See Section 6 for details on Condor submit description files.

condor q: Displays information(such as owner or ID) about all the jobs in queue. See Section 5
for a list of the Condor jobs stages. One might use options such as -global, -submitter,
-run or -name:
http://research.cs.wisc.edu/condor/manual/v6.2/condor q.html

condor status -state -total: List a summary of pool resources.

condor rm ID or condor rm all: Remove a specific job or all of the jobs from queue.

condor vacate job (of interest for debugging DMTCP under Condor): This finds one or more
jobs from the Condor job queue and vacates them from the host(s) where they are currently
running. (Condor may also spontaneously vacate a job for lack of resources.) The vacated
jobs remain in the job queue and return to the idle state. (This usually happens fast, but
if a DMTCP checkpoint takes longer, then this may take some time.) One can specify the
job by its ID or by its owner. A job that is vacated will be sent a soft kill signal, typically
SIGINT. Condor will then restart the job from the beginning on a new exec host. Using
condor vacate job on jobs which are not currently running has no effect.

3

http://research.cs.wisc.edu/condor/manual/v7.6/2_4Road_map_Running.html#sec:standard-universe
http://research.cs.wisc.edu/condor/manual/v6.2/condor_q.html

There is special handling for a job in the Standard Universe, or a job using shim dmtcp in
the Vanilla Universe. In these cases, the job will first produce a checkpoint, and then the job
will be killed. Condor will then restart the job on a new exec host, using the checkpoint to
continue from where it left off.

condor ssh to job (of interest for debugging DMTCP under Condor): This is available on more
recent versions of Condor. It will ssh to the exec host, and cd to the working directory of
your job provided your job is still running.

5 Status of a job on a Condor exec host

The condor q command indicates the state of Condor jobs. Some of the status states are:

• H: on hold (In the hold state, the job will not be scheduled to run until it is released. See
the man pages for condor hold and condor release.)

• R: running

• I: idle (Waiting for a machine on which to execute. Note that condor q -better-analyze

will report if both the job is idle and the job fails to match the required resources specified
in the submit description file.)

• C: completed

• X: removed

Descriptions of some of the state transitions follow.

R → H: When a problem occurs during the execution such as a missing file that was supposed
to be transferred, Condor will hold the job. Held jobs remain in the queue, waiting for user
intervention.

H→R: Upon resolving the problem above, the command condor release frees the job for contin-
ued execution.

R → I → R: If one vacates a job, Condor stops running the job and the job status goes to idle. After
vacating a job, Condor will look for an available machine, on which to restart the job. Note
that if a checkpoint is being used, it will restart from the last checkpoint image. Otherwise,
it will restart from the beginning of the program. This process often takes minutes.

6 Sample Submit Description Files

The condor submit command requires a condor submit description filename as a parameter. There
are three basic examples to start using Condor in:
http://research.cs.wisc.edu/condor/manual/v7.6.2/2 5Submitting Job.html#SECTION00351000000000000000

4

http://research.cs.wisc.edu/condor/manual/v7.6.2/2_5Submitting_Job.html#SECTION00351000000000000000

6.1 Transfering Input Files

The executable (a.out in this example) and any other input files must be specified by an attribute
in the Condor submit description file. All filenames are relative to the submit directory.
transfer input files = a.out

The attribute above depends on DMTCP being installed site-wide. If DMTCP is not installed
site-wide, then the user must provide his or her own copy of all DMTCP executables and libraries
as part of the same Condor attribute.
transfer input files = dmtcp checkpoint,dmtcp coordinator,

dmtcp command,dmtcp restart,dmtcphijack.so,libmtcp.so,mtcp restart,a.out

6.2 Transfering Output Files

The shim dmtcp script will save the standard output and standard error of the job (e.g. a.out) in
the working directory of the exec host. In order to transfer this, and any files written by a.out, one
must include the following attributes in the submit description file:
should transfer files = YES

when to transfer output = ON EXIT OR EVICT

Note also that if the job does not finish, for instance because of an error during execution, the
output files will not be transferred back to the submit host. (Optionally, if Condor parameters
output, error, and log are specified in the Condor description file, then the specified files will
be created on output in the user’s submit directory. However, we have not found these useful in
conjunction with the DMTCP shim script for Condor.)

7 The shim dmtcp Script

In order to use the DMTCP checkpointing package, some additional work is needed before submit-
ting the desired job. A shim dmtcp file is provided for this purpose. This section describes both
the use and some internals of the shim dmtcp script.

7.1 Usage of shim dmtcp Script

One needs to pass the shim dmtcp file to executable and the name of the job (for example foo.o)
to arguments in the submit description file.

executable = shim dmtcp

arguments = --log shim dmtcp.$(CLUSTER).$(PROCESS).log --stdin foo.c --stdout

job.$(CLUSTER).$(PROCESS).out --stderr job.$(CLUSTER).$(PROCESS).err

--ckptint 1800 ./foo 7200 output file.$(CLUSTER).$(PROCESS).out

7.2 Preparing the DMTCP files prior to the Condor job

Assume that:
DMTCP BIN=full pathanme for dmtcp/bin

5

DMTCP LIB=full pathname for dmtcp/lib

Then the following files must be copied to the submit directory (using a flat file structure):

$(DMTCP_BIN)/dmtcp_checkpoint

$(DMTCP_BIN)/dmtcp_command

$(DMTCP_BIN)/dmtcp_coordinator

$(DMTCP_BIN)/dmtcp_restart

$(DMTCP_LIB)/dmtcp/dmtcphijack.so

$(DMTCP_LIB)/libmtcp.so

$(DMTCP_LIB)/libmtcp.so.1

$(DMTCP_BIN)/mtcp_restart

8 Debugging Condor/DMTCP jobs and Internals of shim dmtcp

Before submitting the shim dmtcp file, the DMTCP files must be prepared in the submit directory.
Once your Condor job is running, if you have the command condor ssh to job, you can use it

to ssh to the sandbox directory on the exec host. If not, you can alternatively find the exec host
via: condor q -long | grep RemoteHost

On the exec host, use the Linux ps command to find your process. ps -elf will show the full
pathname of your executable (renamed to condor *.exe). The sandbox directory will typically be
of the form: /var/lib/condor/execute/dir *

After running a job, one can diagnose the results using DMTCP log files. If the job fails, one
must debug what went wrong. This section describes these issues.

8.1 Internals of shim dmtcp Script

When shim dmtcp begins, it will execute the followings:

1) Close the GCB file descriptor.
Condor’s Linux releases (version 6.9.5 and later under the Apache Licence version 2.0.) are
linked with GCB, Generic Connection Brokering. GCB is a firewall/NAT traversal solution
that enables communications through the firewall/NAT. It consists of daemon processes.
The file descriptor inherited by GCB is closed by shim dmtcp before any dmtcp checkpoint

is called, because external socket cannot be restored by DMTCP.

2) Run dmtcp coordinator using the port and checkpoint interval time specified in the submit
description file. It is run on the same remote host machine of Condor as shim dmtcp:
./dmtcp coordinator --port $port --exit-on-last --interval $INTERVAL --background

3) Run dmtcp checkpoint by specifying the port for the given job. For instance, to execute
“./fib 2”, shim dmtcp calls the following:
dmtcp checkpoint --port $port -j ./fib 2

4) The shim dmtcp script creates a trap to handle SIGINT (Condor’s signal for vacating a job).
When the SIGINT is received, the following commands are executed:
dmtcp command --port $port --checkpoint

6

dmtcp command --port $port --status

dmtcp command --port $port --kill

./dmtcp restart script.sh (in case it exists)

8.2 Debugging a Condor Job Using DMTCP

1. How to inspect the results during a DMTCP job:
The command condor ssh to job allows one to ssh to the exec host in the current directory
of the job. The DMTCP jassertlog.* files will be there, and other standard DMTCP
debugging techniques can be used.

2. How to inspect the results after a DMTCP job:
Make sure that DMTCP DIR=./ is part of the environment parameter of the Condor submit
description file. After a DMTCP job, three jassertlog.* * files will be created (jassert-
log.* dmtcp coordinator, jassertlog.* dmtcp checkpoint, and jassertlog.* foo) in the current
directory. If the keyword ERROR does not appear in any of these files, then the DMTCP
job succeeded. In the case of success, the stdout for the user application will appear in file
specified as the value of --stdout for the arguments parameter of the shim script. In the
example in Section A, the value of --stdout is job.$(CLUSTER).$(PROCESS).out.

3. Where are ckpt*.dmtcp files placed?
They will be placed in the same directory where the executable exists (sandbox directory on
the remote host).

4. If one configures dmtcp with ./configure --enable-debug, it will create the directory
/tmp/dmtcp-USER@HOST, which contains debugging files of the form jassertlog.* *.

5. What do I do to get a copy of ckpt *dmtcp, jassertlog. *, etc?
If the submit description file set when to transfer output, then Condor will copy newly
created files on the exec host to the directory of the submit host where the submit com-
mand was called. Condor searches for newly created files in a search path specified by
environment=PATHS, where PATHS is a semicolon-separated sequence of search paths on the
exec host. The environment is specified in the submit description file. If a path is relative,
it is relative to the remote sandbox directory.

Assume one also wishes to see the DMTCP log files (typically found at /tmp/dmtcp-USER@HOST,
then one must add this to environment in the submit description file. See the example submit
description file in Section A.

Acknowledgement

The author thanks Gene Cooperman and Alan De Smet for careful reading and comments on earlier
versions.

A Appendix: Condor Submit Description File

.

7

An example submit description file to use with shim dmtcp for the Vanilla Universe fol-
lows. The first version assumes that DMTCP is already installed globally at your site. The second
version allows you to use DMTCP with Condor from a privately installed DMTCP. Both versions
assume that shim dmtcp will execute the actual application, ./foo. By using shim dmtcp and
DMTCP, if Condor evicts a job, then Condor will automatically restart it, continuing execution
where it left off.

8

A.1 Submit Description File: assumes DMTCP installed globally

universe = vanilla

executable = shim_dmtcp

coresize=-1

###

Argument Meaning

#------------------

--log log file name for actions in shim_dmtcp script, if n/a use /dev/null

--stdin stdin file, if n/a use /dev/null

--stdout stdout file, if n/a use /dev/null

--stderr stderr file, if n/a use /dev/null

--ckptint checkpointing interval in seconds

1 the executable name you should have transferred in

2+ arguments to the executable

###

arguments = --log shim_dmtcp.$(CLUSTER).$(PROCESS).log --stdout \

job.$(CLUSTER).$(PROCESS).out --stderr job.$(CLUSTER).$(PROCESS).err \

--ckptint 1800 ./foo arg1

###

Enable file transfer. Here is where you ’mixin’ the user’s input and

output fles along with what is needed for DMTCP. Don’t forget to transfer

the actual executable along.

###

should_transfer_files = YES

when_to_transfer_output = ON_EXIT_OR_EVICT

transfer_input_files = foo

###

Set up various environment variables. If you need to specify more, mix them

in here.

###

environment=DMTCP_TMPDIR=./;JALIB_STDERR_PATH=/dev/null;\

DMTCP_PREFIX_ID=$(CLUSTER)_$(PROCESS)

###

SIGINT is our soft checkpointing signal

###

kill_sig = 2

###

Output and log files for the shim process which performs the work.

###

output = shim.$(CLUSTER).$(PROCESS).out

error = shim.$(CLUSTER).$(PROCESS).err

log = shim.$(CLUSTER).$(PROCESS).log

Notification = Never

queue 1

9

A.2 Submit Description File: assumes privately installed DMTCP

universe = vanilla

executable = shim_dmtcp

coresize=-1

######################## ./foo #######################

###

Testing Various Requirements Expressions

DMTCP sometimes does odd behaviors on slightly different installations

of Linux. This allows me to select different types of machines to narrow

down problems.

###

Keep it on the same checkpoint platform and kernel revision. Change to

whatever you need this to be to limit the run of DMTCP jobs to a specific

set of platforms if you discover problems.

#Requirements = (CheckpointPlatform == "LINUX INTEL 2.6.x normal 0x40000000" \

&& OSKernelRelease == "2.6.18-128.el5")

###

Argument Meaning

#------------------

--log log file name for actions in shim_dmtcp script, if n/a use /dev/null

--stdin stdin file, if n/a use /dev/null

--stdout stdout file, if n/a use /dev/null

--stderr stderr file, if n/a use /dev/null

--ckptint checkpointing interval in seconds

1 the executable name you should have transferred in

2+ arguments to the executable

###

arguments = --log shim_dmtcp.$(CLUSTER).$(PROCESS).log --stdout \

job.$(CLUSTER).$(PROCESS).out --stderr job.$(CLUSTER).$(PROCESS).err \

--ckptint 1800 ./foo arg1

###

Enable file transfer. Here is where you ’mixin’ the user’s input and

output fles along with what is needed for DMTCP. Don’t forget to transfer

the actual executable along.

###

should_transfer_files = YES

when_to_transfer_output = ON_EXIT_OR_EVICT

transfer_input_files = dmtcp_checkpoint,dmtcp_coordinator,dmtcp_command,\

dmtcp_restart,dmtcphijack.so,libmtcp.so,libmtcp.so.1,mtcp_restart,foo

###

Set up various environment variables. If you need to specify more, mix them

in here.

###

environment=DMTCP_TMPDIR=./;JALIB_STDERR_PATH=/dev/null;\

DMTCP_PREFIX_ID=$(CLUSTER)_$(PROCESS)

10

###

SIGINT is our soft checkpointing signal

###

kill_sig = 2

###

Output and log files for the shim process which performs the work.

###

output = shim.$(CLUSTER).$(PROCESS).out

error = shim.$(CLUSTER).$(PROCESS).err

log = shim.$(CLUSTER).$(PROCESS).log

Notification = Never

queue 1

11

	Starting Point
	The Condor Universes
	Condor's File Transfer Mechanism
	Basic Condor Commands
	Status of a job on a Condor exec host
	Sample Submit Description Files
	Transfering Input Files
	Transfering Output Files

	The shim_dmtcp Script
	Usage of shim_dmtcp Script
	Preparing the DMTCP files prior to the Condor job

	Debugging Condor/DMTCP jobs and Internals of shim_dmtcp
	Internals of shim_dmtcp Script
	Debugging a Condor Job Using DMTCP

	Appendix: Condor Submit Description File
	Submit Description File: assumes DMTCP installed globally
	Submit Description File: assumes privately installed DMTCP

