
Extending DMTCP Checkpointing

for a Hybrid Software World

Gene Cooperman

gene@ccs.neu.edu

College of Computer and Information Science

Northeastern University, Boston, USA

and Université Fédérale Toulouse Midi-Pyrénées

August 16, 2017

∗
Partially supported by NSF Grant ACI-1440788, by a grant from Intel Corporation, and by an IDEX Chaire d’Attractivité (Université Fédérale
Toulouse Midi-Pyrénées) under Grant 2014-345.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 1 / 37

Table of Contents

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Recent Advances: Petascale Checkpointing

4 Latest Advances: Slurm/DMTCP integration, Batch Pools, OpenSHMEM

5 Experimental Advances: Statically linked targets, GPUs, Omni-Path, et al.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 2 / 37

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Recent Advances: Petascale Checkpointing

4 Latest Advances: Slurm/DMTCP integration, Batch Pools, OpenSHMEM

5 Experimental Advances: Statically linked targets, GPUs, Omni-Path, et al.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 3 / 37

DMTCP: A Demo

DMTCP% vi test/dmtcp1.c

> int main(int argc, char* argv[])

> { int count = 1;

> while (1)

> { printf(" %2d ",count++);

> fflush(stdout);

> sleep(2); }

> return 0; }

DMTCP% test/dmtcp1

1 2 3 ^C

DMTCP% bin/dmtcp_launch --interval 5 test/dmtcp1

1 2 3 4 5 6 7 ^C

DMTCP% ls ckpt_dmtcp1*

ckpt_dmtcp1_66e1c8437adb789-40000-5745d372.dmtcp

DMTCP% bin/dmtcp_restart ckpt_dmtcp1*

7 8 9 10 ^C

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 4 / 37

DMTCP: A First Look

DMTCP: Distributed MultiThreaded CheckPointing

As easy to use as:

dmtcp_launch ./myapp

dmtcp_command --checkpoint

dmtcp_restart ckpt_myapp_*.dmtcp

and DMTCP is contagious: It follows fork(), ssh, etc.

Free and Open Source: http://dmtcp.sourceforge.net

The DMTCP project is now in its second decade.

Published literature: more than 50 other groups (not us).

http://dmtcp.sourceforge.net/publications.html

Downloads:

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 5 / 37

http://dmtcp.sourceforge.net
http://dmtcp.sourceforge.net/publications.html

What is Checkpointing?

Checkpointing is the action of saving the state of a running process to a

checkpoint image file.

Checkpointing supports several other features for free!

1 Process migration is the action of migrating a running process from one

computer to a different computer.

Process migration is easy: just copy the checkpoint image file to a new

computer, and restart there.

2 Process replication is the action of creating a copy of a running process.

Process replication is easy: just copy the checkpoint image file to a new

computer or directory, and restart both the original and the copy of the

checkpoint image file.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 6 / 37

Uses for Checkpointing

1 Fault tolerance (if the process crashes, then roll back to a previous

checkpoint)

2 Extended sessions (if it’s time to go home to dinner, then checkpoint and

restart the next day)

3 Debugging (checkpoint every 30 seconds; if the process crashes, restart

from the last checkpoint under a debugger, and analyze)

4 Reproducible Bug Reports (checkpoint every 30 seconds; if the process

crashes, submit the last checkpoint image to the program developer)

5 Fast startup of a process (checkpoint after the process starts, and then

restart from the ckpt image file in the future)

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 7 / 37

DMTCP Architecture: Coordinated Checkpointing

DMTCP

COORDINATOR

CKPT MSG

CKPT THREAD

USER PROCESS 1

S
IG

U
S

R
2

S
IG

U
S

R
2

USER THREAD B

USER THREAD A

CKPT MSG

S
IG

U
S

R
2

connection
socket

USER THREAD C

CKPT THREAD

USER PROCESS 2

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 8 / 37

Principles

One DMTCP coordinator = one (checkpointable) DMTCP comput.;

Can have multiple coordinators/computations separately checkpointable

Either the DMTCP checkpoint thread is active or the user thread, but not

both at the same time.

No single point of failure, providing that checkpoint image files are

backed up: Even if the coordinator dies, just restart from last checkpoint.

The runtime libraries are saved as part of the memory image. So, the

application continues to use the same library API.

The Linux environment variables are part of the memory image. (A

special DMTCP plugin must be invoked to change any environment

variables that were saved at the time of checkpoint.)

Everything is in user-space; no admin privileges needed.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 9 / 37

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Recent Advances: Petascale Checkpointing

4 Latest Advances: Slurm/DMTCP integration, Batch Pools, OpenSHMEM

5 Experimental Advances: Statically linked targets, GPUs, Omni-Path, et al.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 10 / 37

DMTCP Plugins

WHY PLUGINS?

Processes must talk with the rest of the world!

Process virtualization: virtualize the connections to the rest of the world

In short, a plugin is responsible for modelling an external subsystem, and

then creating a semantically equivalent construct at the time of restart.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 11 / 37

A Simple DMTCP Plugin: Virtualizing the Process Id

PRINCIPLE:

The user sees only virtual pids; The kernel sees only real pids

User Process
PID: 4000

User Process
PID: 4001

Virt. PID Real PID

4000 2652
4001 3120

Translation Table

getpid()26524000

kill(4001, 9) KERNEL

4001
Sending signal 9
to pid 31203120

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 12 / 37

Plugins for EDA: A Real-world Example

EDA is “Electronic Design Automation” (circuit design for chips).

Part of a four-year collaboration between DMTCP team and Intel:

“Be Kind, Rewind — Checkpoint & Restore Capability for Improving

Reliability of Large-scale Semiconductor Design”, I. Ljubuncic, R. Giri,

A. Rozenfeld, and A. Goldis, IEEE HPEC-14, Sept., 2014.

(published solely by Intel co-authors)

Fictional scenario with ball-park numbers (no particular vendor):

Software circuit simulation: about 1 million times slowdown

Hardware emulation at back-end: about 1 thousand times slowdown

Cost of back-end hardware emulator: about $800,000

Use case A (for a new CPU design): Boot Microsoft Windows overnight

with emulator, and then test Microsoft Office.

Use case B: Boot Microsoft Windows overnight with emulator, and

checkpoint. In later iterations, restart, and then test Microsoft Office.

The above fictional scenario requires a DMTCP plugin to model the back-end

emulator. See publications with emulator vendors for details.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 13 / 37

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Recent Advances: Petascale Checkpointing

4 Latest Advances: Slurm/DMTCP integration, Batch Pools, OpenSHMEM

5 Experimental Advances: Statically linked targets, GPUs, Omni-Path, et al.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 14 / 37

Scalable checkpointing on Stampede at TACC

Using MVAPICH on Stampede in 2016:

64 128 256 512 1024 2048

Number of MPI processes

5

10

20

50

100

200

500

1000

R
u
n
ti
m

e
(s

)

LU.C

LU.D

LU.E
DMTCP (LU.C)

Native (LU.C)

For LU decomposition, the total size of data is constant. When the number of

processes doubles, the size of a checkpoint image halves. So, the time halves.

(This relationship breaks down at the level of 2K and 4K cores — apparently

due to Lustre contention.)

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 15 / 37

Petascale checkpointing for two real-world applications

Using MVAPICH on Stampede in 2016:

Petascale transparent, system-level checkpointing on Stampede:

HPCG (32,752 processes, 652 s);

NAMD (16,368 processes, 157 s)

Compare w/ largest prev. publ. transp. checkpoint: 256 processes

Stampede was the #10 supercomputer at the time of this experiment.

1 HPCG: Combination of dense and sparse linear algebra intended to reflect

real-world linear algebra applications

2 NAMD: Molecular dynamics

See: “System-level Scalable Checkpoint-Restart for Petascale

Computing”, J. Cao, K. Arya, R. Garg, S. Matott, D.K. Panda,

H. Subramoni, J. Vienne and G. Cooperman, 22nd IEEE ICPADS, 2016

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 16 / 37

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Recent Advances: Petascale Checkpointing

4 Latest Advances: Slurm/DMTCP integration, Batch Pools, OpenSHMEM

5 Experimental Advances: Statically linked targets, GPUs, Omni-Path, et al.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 17 / 37

Integration of DMTCP with Slurm

Checkpoint/restart in Slurm: current status and new developments,

M. Rodrı́guez-Pascual, J.A. Morigo, R. Mayo-Garcı́a,

SLUG’16 (Slurm User’s Groups),

https://slurm.schedmd.com/SLUG16/ciemat-cr.pdf

(Note: The authors are members of the CIEMAT institute, Madrid.)

This full integration of Slurm with DMTCP is now in beta testing as as a

Slurm module. (Additional beta test sites are welcome!) This has resulted in

several corner cases being fixed by Jiajun Cao and Manuel Rodrı́guez-Pascual.

Many parts of the InfiniBand plugin for DMTCP transparent checkpointing

have now been re-written for maintainability based on this feedback.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 18 / 37

https://slurm.schedmd.com/SLUG16/ciemat-cr.pdf

Batch Pools for Single-host Batch Queues (shared node)

QUESTION: If transparent checkpointing is now robust, why do we insist on

a first-in, first-out protocol for batch queues?

ANSWER: Some first experiments have shown up to 20% better throughput

by dynamically swapping jobs in and out to optimize co-scheduling.

Key Operating Regimes Supported:

Under-commitment of CPU cores: Given a large working set,

Set jobs: total threads (across all jobs) < total CPU cores

Over-commitment of CPU cores: Given a small working set,

Set jobs: total threads (across all jobs) > total CPU cores

Turn on Intel hyper-threading: Given small cache footprint,

Set jobs: total threads (across all jobs) ≫ total CPU cores

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 19 / 37

Support for OpenSHMEM

“Scalable System-level Transparent Checkpointing for OpenSHMEM”,

Rohan Garg, Jérôme Vienne and Gene Cooperman,

OpenSHMEM and Related Technologies. Enhancing OpenSHMEM for

Hybrid Environments — Third Workshop, OpenSHMEM 2016, Baltimore,

MD, USA, Aug. 2–4, 2016, Revised Selected Papers (OpenSHMEM’16), pp.

52–65, Lecture Notes in Computer Science, Volume 10007, Springer-Verlag

OpenhSHMEM: http://www.openshmem.org/

Standardized interface for shared memory view; supports PGAS/Partitioned

Global Address Space, one-sided communication (similar to that of MPI and

often implemented through RDMA: e.g., in InfiniBand), atomic operations,

collective operations

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 20 / 37

http://www.openshmem.org/

Outline

1 DMTCP — A review

2 DMTCP Plugins — A review

3 Recent Advances: Petascale Checkpointing

4 Latest Advances: Slurm/DMTCP integration, Batch Pools, OpenSHMEM

5 Experimental Advances: Statically linked targets, GPUs, Omni-Path, et al.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 21 / 37

Early Peek at Experimental Advances

DMTCP support for statically linked executables (in progress) — Jay

Kim

(... and a first proof of principle to support Linux namespaces has

separately been implemented; Goal: Checkpoint Docker-based

microservices and other Linux container-based technologies)

Transparent checkpointing for GPGPU computations (using NVIDIA

GPUs) — Rohan Garg

(first investigations only, but currently hopeful)

Initial support for a simple case for Intel Omni-Path — Jiajun Cao

(Omni-Path has better hardware support for MPI; some examples are a

tagged architecture (MPI tags supported in hardware), and the

registration of Omni-Path endpoints (think of an MPI rank) instead of

InfiniBand queue pairs.)

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 22 / 37

Other Experimental Advances

Full support for pty’s (pseudo-ttys) — Twinkle Jain

(pty’s are often used to support potentially interactive features such as a

terminal emulator, ssh to remote machine, etc.)

Experimental support for combination of DMTCP transparent

checkpointing with VeloC application-specific checkpointing — initial

work by Rohan Garg

(VeloC is a project of the DOE Exascale Initiative in the United States,

led by Franck Cappello, Argonne National Laboratory.)

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 23 / 37

Questions?

THANKS TO THE MANY STUDENTS AND OTHERS
WHO HAVE CONTRIBUTED TO DMTCP OVER THE
YEARS:
Jason Ansel, Kapil Arya, Alex Brick, Jiajun Cao, Tyler Denniston, Xin Dong,

William Enright, Rohan Garg, Twinkle Jain, Samaneh Kazemi, Jay Kim,

Gregory Kerr, Apoorve Mohan, Mark Mossberg, Manuel Rodrı́guez Pascual,

Artem Y. Polyakov, Michael Rieker, Praveen S. Solanki, Ana-Maria Visan

QUESTIONS?

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 24 / 37

Supplementary Slides

SUPPLEMENTARY SLIDES

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 25 / 37

But How Does It Work?

Version 1: 1 Copy all of the process’s virtual memory to a file.

(It’s easy under Linux:

“cat /proc/self/maps” lists your memory regions.)

Version 2: 1 Make system calls to first discover the system state.

“ls /proc/self/fd” to discover open files of the

process.

How much of file have we read?

current offset = lseek(my file descriptor, 0,

SEEK CUR

And so on for other system state . . .

2 Copy all of the process’s virtual memory to a file.

Version 3: 1 For distributed processes, drain “in-flight” network data

into the memory of the process.

2 Make system calls to first discover the system state.

3 Copy all of the process’s virtual memory to a file.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 26 / 37

But How Does It Work? (details from operating systems)

dmtcp launch ./a.out arg1 ...

ց

LD PRELOAD=libdmtcp.so ./a.out arg1 ...

libdmtcp.so runs even before the user’s main routine.

libdmtcp.so:

libdmtcp.so defines a signal handler (for SIGUSR2, by default)

(more about the signal handler later)

libdmtcp.so creates an extra thread: the checkpoint thread

The checkpoint thread connects to a DMTCP coordinator (or creates one

if one does not exist yet).

The checkpoint thread then blocks, waiting for the DMTCP coordinator.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 27 / 37

What Happens during Checkpoint? (details from operating

systems)

1 The user (or program) tells the coordinator to execute a checkpoint.

2 The coordinator sends a ckpt message to the checkpoint thread.

3 The checkpoint thread sends a signal (SIGUSR2) to each user thread.

4 The user thread enters the signal handler defined by libdmtcp.so, and

then it blocks there.

(Remember the SIGUSR2 handler we spoke about earlier?)

5 Now the checkpoint thread can copy all of user memory to a checkpoint

image file, while the user threads are blocked.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 28 / 37

Anatomy of a Plugin

Plugins support three essential properties:

Wrapper functions: Change the behavior of a system call or call to a library

function (X11, OpenGL, MPI, . . .), by placing a wrapper

function around it.

Event hooks: When it’s time for checkpoint, resume, restart, or another

special event, call a “hook function” within the plugin code.

Publish/subscribe through the central DMTCP coordinator: Since DMTCP

can checkpoint multiple processes (even across many hosts), let

the plugins within each process share information at the time of

restart: publish/subscribe database with key-value pairs.

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 29 / 37

InfiniBand Plugin

Checkpoint while the network is running! (Older implementations

tore down the network, checkpointed, and then re-built the network.)

Design the plugin once for the API, not once for each vendor/driver!

socket plugin: ipc/socket; InfiniBand plugin: infiniband

InfiniBand uses RDMA (Remote Direct Memory Access).

InfiniBand plugin is a model for newer, future RDMA-type APIs.

Virtualize the send queue, receive queue, and completion queue.

CPU RAM
HCA

pinned
RAM

CPURAM
HCA

pinned
RAM

Send Queue

Recv Queue

Completion
Queue

Send Queue

Recv Queue

Completion
Queue

InfiniBand

InfiniBand

HCA HARDWARE:

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 30 / 37

DMTCP and InfiniBand

ISSUES: At restart time, totally different ids and queue pair ids.

Solution: Drain the completion queue and save in memory.
On restart, virtualize the completion queue:

Virtualized queue returns drained completions before returning

completions from the hardware.

Plugin Internal Resources

Virtual queue pair

(ptr to real queue pair)

Shadow queue pair of plugin

Post Send Log

Post Recv Log

Modify Queue Pair Log

DMTCP libraryInfiniBand ibverbs library

DMTCP InfiniBand Plugin

Kernel driver

HCA Adapter (hardware)

Device−dependent driver in user space

Queue pair created by kernel

Fnc call to library:

Target App (user code)

See: Transparent Checkpoint-Restart over InfiniBand, HPDC-14, Cao, Kerr, Arya, Cooperman

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 31 / 37

KVM Plugin: Checkpoint a Virtual Machine

Issue: KVM acts as a hypervisor that will launch guest virtual machines.

How to “re-launch” a previously checkpointed VM?

Solution: Virtualize the KVM API for a guest (QEMU) virtual machine

with user space)
tables (shared

vC
P

U
0

vC
P

U
n

Guest VM
(user space component)

VM Shell

 (peripherals, IRQ, etc.)
Hardware description

Kernel Module for VM:

Kernel Space Memory
User Space Memory

vCPU threads

Async I/O
threads

virtual cores
vCPUs for

w/ kernel space)
tables (shared

vC
P

U
0

vC
P

U
n

with user space)
tables (shared

Guest VM
(user space component)

VM Shell

Kernel Module for VM:

Kernel Space Memory
User Space Memory

(Empty H/W description)

virtual cores
vCPUs for

vCPU threads

Async I/O
threads

w/ kernel space)
tables (shared

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 32 / 37

Tun Plugin: Checkpoint a Network of Virtual Machines

Issue: Current virtual machine snapshots cannot also save the state of the

network. (Networking virtual machines requires the Linux Tun/Tap

kernel module.)

Solution: Virtualize the KVM API for a guest (QEMU) virtual machine

NEXT: Virtualize the Tun network.

Write a DMTCP plugin to save the state of the “Tun” network between

virtual machines on different physical nodes.

“Checkpoint-Restart for a Network of Virtual Machines”,

Rohan Garg, Komal Sodha, Zhengping Jin and and Gene Cooperman,

Proc. of 2013 IEEE Cluster Computing

http://www.ccs.neu.edu/home/gene/papers/cluster13.pdf

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 33 / 37

http://www.ccs.neu.edu/home/gene/papers/cluster13.pdf

OpenGL Plugin: Checkpoint 3-D Graphics

Usually a virtual machine cannot take a snapshot of 3-D graphics (cannot

snapshot OpenGL applications). This is because the 3-D graphics object

are saved in the graphics hardware.

Issue: Same problem as we saw with InfiniBand hardware.

What is the solution this time?

Solution: Record, compress, and replay the commands.

Virtualize the graphics objects in the graphics hardware accelerator.

“Transparent Checkpoint-Restart for Hardware-Accelerated

3D Graphics”,

Samaneh Kazemi Nafchi, Rohan Garg, and Gene Cooperman

http://arxiv.org/abs/1312.6650

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 34 / 37

http://arxiv.org/abs/1312.6650

EXAMPLE: Plugin Event

void dmtcp_event_hook(DmtcpEvent_t event,

DmtcpEventData_t *data)

{

switch (event) {

case DMTCP_EVENT_WRITE_CKPT:

printf("\n*** Checkpointing. ***\n"); break;

case DMTCP_EVENT_RESUME:

printf("*** Resume: has checkpointed. ***\n"); break;

case DMTCP_EVENT_RESTART:

printf("*** Restarted. ***\n"); break;

...

default: break;

}

DMTCP_NEXT_EVENT_HOOK(event, data);

}

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 35 / 37

EXAMPLE: Plugin Wrapper Function

unsigned int sleep(unsigned int seconds)

{ /* Same type signature as sleep */

static unsigned int (*next_fnc)() = NULL;

struct timeval oldtv, tv;

gettimeofday(&oldtv, NULL);

time_t secs = val.tv_sec;

printf("sleep1: "); print_time(); printf(" ... ");

unsigned int result = NEXT_FNC(sleep)(seconds);

gettimeofday(&tv, NULL);

printf("Time elapsed: %f\n",

(1e6*(val.tv_sec-oldval.tv_sec)

+ 1.0*(val.tv_usec-oldval.tv_usec)) / 1e6);

print_time(); printf("\n");

return result;

}

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 36 / 37

Some Example Strategies for Writing Plugins

Virtualization of ids: see pid virtualization — ≈ 50 lines of code

Virtualization of protocols (example 1): virtualization of ssh daemon

(sshd) — ≈ 1000 lines of code

Virtualization of protocols (example 2): virtualization of network of

virtual machines — ≈ 750 lines of code (KVM/QEMU) and ≈ 350 lines

of code (Tun/Tap network)

Shadow device driver: transparent checkpointing over InfiniBand —

≈ 3,600 lines of code

Record-Replay with pruning: transparent checkpointing of 3-D graphics

in OpenGL for programmable GPUs — ≈ 4,500 lines of code

Record state of O/S subsystem and CPU: checkpointing of ptrace system

call for GDB, etc. — ≈ 1,000 lines of code (includes checkpointing x86

eflags register, trap flag: CPU single-stepping)

Gene Cooperman DMTCP Checkpointing for Hybrid Software August 16, 2017 37 / 37

	DMTCP — A review
	DMTCP Plugins — A review
	Recent Advances: Petascale Checkpointing
	Latest Advances: Slurm/DMTCP integration, Batch Pools, OpenSHMEM
	Experimental Advances: Statically linked targets, GPUs, Omni-Path, et al.

